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Dynamics of Olivary Neurons
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Excitation of ensembles of climbing fibersÐ the axons of olivary neurons Ð in
the cerebellum is predicted on the basis of observations of climbing fiber tactile
receptive fields. Each stimulus excites an ensemble of climbing fibers, called its
image. When receptive fields are eliminated by inhibition, injury, or the functional
state of the circuit, the image poset can change. Four maps are explored: the map
from the poset of all simultaneous stimulus arrays to the poset of excited
ensembles, a map in the reverse direction, the map from the poset of all stimulus
sequences of a given number to ensemble response, and a map in the reverse
direction. The map from excitation to response is complicated by the oscillatory
tendency of climbing fibers, by both phasing and response spike number. The
central question motivating the study is to what extent climbing fiber activity
allows discrimination of stimuli, either in simultaneous arrays or in sequences
of arrays. The question is addressed by predicting equivalence classes, first on
the basis of excitation of cells in the inferior olive and then on the basis of
response in the climbing fibers to which they give rise. The paper provides a
mechanism for climbing fibers to behave as event detectors, assuming an
oscillatory behavior of inferior olive cells. It also provides another example of
the combination of continuous and discrete aspects of nervous system function.

1. INTRODUCTION

The nervous system uses a variety of organizations to transform sensory
information for combination with other sensory information or for motor use.

In some systems, the information is transformed using a neighbor-preserving

mapping (Schwartz, 1977). That is not true among the tactile responses of

climbing fibers, the axons of olivary neurons, which powerfully activate

Purkinje cells in the cerebellum (Fig. 1). In order to analyze their organization

of cerebellar climbing-fiber tactile receptive fields, we have taken an approach
McIlwain (1986) calls ª point imageº : the ensemble response to a single
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Fig. 1. Sketch of a cat’ s brain, with an enlargement of climbing fibers entwining Purkinje

cells. (A) A cat’ s brain as viewed from above, behind, and to the left. The lobes of the cerebral

cortex are the two large, smooth lobes at the left of the figure (front of the cat). Just behind

the cerebral cortex, and a little under its edge, is the cerebellar cortex, which forms a roof over

the other parts of the cerebellum, such as the cerebellar nuclei, which are not shown. The

cerebellar cortex is folded in fine lateral folds, because, if spread out, it would be much longer

from front to back than from side to side. (Also the human cerebellar cortex is more finely

folded than the cerebral cortex.) Leading from under the cerebellar cortex and off to the right

is the brain stem. Within the brain stem, the inferior (meaning lower in the brain stem) olivary

nucleus (commonly called the inferior olive) is identified by dotting. Each climbing fiber arises

from a neuron in the inferior olive and goes to the cerebral cortex, as indicated by the heavy

line. In the cerebellar cortex (as indicated by the small rectangle), each Purkinje cell receives

exactly one climbing fiber, although each olivary cell sends climbing fibers to about 10 Purkinje

cells. (B) Purkinje cells entwined by climbing fibers. The black neurons are Purkinje cells, the

largest cells in the cerebellum and the only output cells. Purkinje cells are arrayed on a 2-

surface like a field of radishes, with their dendrites (the top part, where the radish leaves would

be) remaining close to a plane perpendicular to the surface of the cerebellar cortex and parallel

to the front±back axis of the cat. The axon (output) is down (radish root); the dendrite is for

input and perhaps input transformation. The white fibers are climbing fibers. Each one wraps

around its Purkinje cell, synapsing many times. If the climbing fiber spikes, so does the Purkinje

cell. In contrast, the other major input to the Purkinje cells, the parallel fibers, rely on large

numbers and small influence per fiber. Each Purkinje cell can receive 100,000 ±200,000 parallel

fiber synapses.
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stimulus (McCollum and Robertson, 1988; McCollum, 1992; Castelfranco

et al., 1994). The first part of this paper formalizes previous work on spatial

aspects of climbing fiber response (Section 2) in such a way that it can be

combined with experimental results on temporal aspects to yield spatiotempo-

ral mapping (Section 3). Spatiotemporal mapping can be used to understand

how two sets of apparently conflicting experimental resultsÐ one set indicat-

ing that climbing fibers fire rarely and only in response to unusual or unex-

pected events and another set indicating that they fire in an ongoing rhythm

based on fundamental cellular propertiesÐ can arise from similar mappings

at different frequencies.

The areas of skin to which cerebellar climbing fibers are sensitive show

a surprising orderliness, which can provide focus for studying their collective

behavior. The tactile receptive field of a particular neuron, such as a climbing

fiber, is the area of skin within which a stimulus excites that neuron. The

configurations of most cerebellar climbing-fiber tactile receptive fields can

be generated by means of a few rules. The two major rules are iterative, so

that the total set of possible configurations is highly regular (McCollum,

1992). Under the assumption that total excitation among a collection of

climbing fibers is simply the union of individual excitations, the full set of

configurations can be used to predict the ensembles that respond to spatially

and temporally complex stimuli.

Ensembles of climbing fibers can distinguish more locations on the skin

than one climbing fiber, but their spatial resolution is limited to that of the

intersections of receptive fields. Among the climbing fibers, receptive field

boundaries have segments in common, so that it is meaningful to determine

the minimal areas of skin that are intersections of or differences of receptive

fields (McCollum and Robertson, 1988) (Fig. 2). A compartment is a minimal

(under set-theoretic inclusion) nonempty Boolean combination of receptive

fields, in the sense that no other nonempty Boolean combination of receptive

fields is properly contained within it. Because these definitions are based on

observations of climbing fibers, ª receptive fieldº and ª compartmentº will

refer to those of cerebellar climbing fibers for the remainder of the paper.

However, the results in the paper may generalize to other cell populations.

Compartments are the smallest skin areas that ensembles of climbing fibers

can distinguish. This quantization of areas allow for a discrete analysis of

structure to which continuous or differentiable analyses would be oblivious.

Because the set of receptive fields is finite, each receptive field is a

union of compartments. Only particular combinations of compartments have

been observed to occur together in unions as receptive fields (McCollum,

1992). The rules generating receptive fields from compartments are given in

Section 2.
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Fig. 2. Diagrams showing anterior lobe compartments on the cat hindpaw and face, and CF-

contiguity on the face. These are static diagrams, or skeletal pictures, of a sort of grid of the

cat’ s paw and face, as represented among the cerebellar climbing fibers. (A) Hindpaw. The

lines are boundaries or boundary segments of receptive fields. The empty spaces are the

compartments, or minimal Boolean combinations of sets of receptive fields. The top, bottom,

and sides of the paw are projected onto the plane. The four circular compartments are the toe

tips. The areas above them on the page are the backs (tops) of the toes. The elongated diamond-

shaped areas between the toe tips are the skin between the toes. The four ovals, one below

each toe tip, are the toe pads. The central pad, with three humps, is divided in the middle.

This is a simplified diagram; more detail can be found in McCollum (1992). (B) Face. The

diagram shows the right half of the cat’ s face, with the ear at the top, the nose crossing the

midline, and the smallest compartment the lower lip. The strip at the bottom goes under the

chin. The lateral bulge is under the jaw. There is a dashed line at the jaw line. Thick solid

lines and dashed lines indicate compartment boundaries. Dashed lines are not crossed by

receptive fields. Thin solid lines and dotted lines indicate binary CF-contiguity between compart-

ments marked with diamonds. Compartments not connected by binary CF-contiguity are

included in receptive fields, but not enough such receptive fields have been observed to induce

rules for generating them. More detail on face compartments and binary CF-contiguity can be

found in Castelfranco, et al. (1994).

Previous papers have organized the experimental data of Robertson and

colleagues to allow formalization (McCollum and Robertson, 1988; McCol-

lum, 1992; Castelfranco et al., 1994). Definitions and assumptions used in

this paper are developed in the previous ones, but stated more formally here.

The assumptions cover all but a few of the observed cases of paw receptive
fields reported by Robertson and colleagues, and have predicted receptive

field types found in later experimental studies (McCollum, 1992).

Because of the controversy surrounding the temporal and situational

behavior of climbing fibers (Simpson et al., 1996), this paper is divided into
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a purely spatial part (Section 2), based on the results of Robertson and

colleagues, and a temporal part (Section 3), based on the results of LlinaÂs

and colleagues. Even though the work of LlinaÂs and colleagues indicates
deterministic responses of climbing fibers according to resetting of their

internal rhythms by previous stimulation, it could be argued that there is

a stochastic component to the response pattern. However, neither such a

stochasticity nor the controversy over which stimulus patterns lead to

responses affects the conclusion by Robertson and colleagues that the

receptive fields for light, punctate stimuli are discrete.
The purpose of this paper is to present the patterns of response among

climbing fibers, given a range of tactile stimuli. The ability of the climbing

fiber responses to discriminate stimuli has been questioned because of the

climbing fibers’ low firing frequency and large receptive fields. Specification

of response patterns allows determination of equivalence classes of stimuliÐ

those that evoke responses in the same climbing fibers in the same patternsÐ
and the climbing fibers’ ability to discriminate stimuli. This paper will only

consider cell activity caused by external stimulation, even though the activity

of ensembles of climbing fibers is affected by both cellular and circuit

interactions. Spatially and temporally distributed stimulus arrays will be

constricted by combining single-compartment stimuli used in experiments
(Rushmer et al., 1980; Robertson, 1987; Robertson and Elias, 1988;

Castelfranco et al., 1994). The assumption will be made that the simultaneous

stimulation of more than one compartment does not change the receptive

field of any given cell. The ensemble response indicated by single-neuron

receptive fields can then be used as a background against which cellular and

circuit interaction effects can be seen as perturbations.

2. ONE-TIME SPATIALLY DISTRIBUTED STIMULUS ARRAY

The set of available receptive fields limits the stimulus arrays that can

be distinguished. In the case of discrete compartments, receptive fields limit

the discrete excitation patterns that occur. Distinct stimulus arrays can evoke
the same excitation pattern, so that the stimulus arrays are ª excitation-equiva-

lent.º [In previous publications, we have used the term ª response-equiva-

lenceº (Robertson and McCollum, 1989, 1991). In this paper, the consideration

of subthreshold oscillation is added in later sections; the term ª response-

equivalenceº is reserved until then.] This section will present the receptive

fields in the anterior lobe, the more limited set of receptive fields in the
paramedian lobule, the excitation mapping for general receptive fields of this

type, and the effects of lesions described by eliminating receptive fields.

In this section, the whole stimulus is assumed to arrive at the same

instant: it can be spatially, but not temporally distributed. Because stimuli
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within the same compartment excite the same set of climbing fibers, there

is no loss of generality in fixing for each compartment i a nonempty set *i

of point stimuli arriving simultaneously within compartment i; *i will be
referred to as a ª single-compartment stimulus.º Any stimulus to skin included

in one or more compartments can be specified as a union of single-compart-

ment stimuli ø i P I*i, where I is a subset of the set of compartments; such a

multicompartment stimulus will be called a ª stimulus arrayº for emphasis.

2.1. Receptive Fields in the Anterior Lobe

Most of the combinations of compartments that form paw or face

receptive fields in the anterior lobe are specified by three generative rules.

Descriptions of receptive fields are minor idealizations from experimental

observation: a few paw receptive fields require a further generative rule, and

on some parts of the body there are not enough observed receptive fields to
be sure of their organization (McCollum, 1992; McCollum and Robertson,

1988; Castelfranco et al., 1994). [For more completeness, including clumps,

see McCollum (1992).] Toe compartments combine in a way that is sensitive

to anatomical equivalence between skin areas; for example, toe pads are

anatomically equivalent to each other. Non-toe compartments combine
according to binary relations analogous to contiguity on the skin.

The generative rules are based on two types of symmetric relations

between compartments, analogous to contiguity on the skin. One is binary CF-
contiguity (CF for climbing fiber) between pairs of compartments (McCollum,

1992). (Contiguity is between compartments rather than climbing fibers.)

The generative rule using this relation is:

Rule 1: If compartment c1 is included in a receptive field r1, and compart-
ment c2 is binary CF-contiguous with c1, then r1 ø c2 is also a receptive field.

Rule 1 governs almost all face receptive fields (McCollum, 1992;
Castelfranco et al., 1994). Also, it governs the compartments on the paws

not associated with particular toes, like the central pad and the compartments

at the sides of the paws.

Rules 1 and 2 are in iterative form and so require a seed, or first

compartment in a receptive field. Among the face and paw receptive fields
analyzed so far (McCollum, 1992; Castelfranco et al., 1994), not all compart-

ments occur separately as receptive fields and, to form the observed receptive

fields, not all compartments are required as seeds. Rule 3 will be stated

before Rule 2.

Rule 3: There is a nonempty subset of compartments, each of which is

a receptive field.
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Paw compartments combine according to toe CF-contiguity, a binary,

symmetric relation between pairs of toes and between pairs of anatomical

equivalence classes across toes. Only neighboring toes are toe CF-contiguous.
Toe CF-contiguity between anatomical equivalence classes is more compli-

cated, because they are not sequential (McCollum, 1992). In iterative form,

the rule applying to toes is:

Rule 2: Let receptive field r consist exactly of elements of anatomical

equivalence classes L1, . . . , Lm on toes m 1, . . . , m n. If anatomical equivalence

class N is toe CF-contiguous to any in the set L1, . . . , Lm , then there exists
a receptive field consisting of the union of r with the elements of N on toes

m 1, . . . , m n. There also exists a receptive field consisting of the union of r
with the elements of L1, . . . , Lm on toe k if toe k is a neighbor to any of the

toes m 1, . . . , m n.

Rule 2 results in receptive fields that include only anatomically equiva-

lent areas on the toes involved in the receptive field (a property called

ª rectangularityº in McCollum, 1992). If the iterative Rules 1 and 2 accurately
reflect the processes by which receptive fields are formed, one would expect

rare nonrectangular receptive fields to be formed by a combination of Rules

1 and 2.

When the receptive fields generated by the rules of combination are

arranged as posets (Fig. 3), it is easy to specify excitation. If receptive field
r1 includes receptive field r2, then every time cells with receptive field r2 are

excited by a stimulus, so are the cells with receptive field r1.

Rule 2 generates a set of receptive fields that can be organized into

triangular subposets. Given a sequentially labeled set of pairwise CF-contigu-

ous compartments C 5 {c1,c2, . . . , cp}, let the neighbor set Np be

{ ø n
i 5 m ci: 1 # m # n # p}

Then the set of all possible receptive fields over any anatomical equivalence

class of compartments on the paw is isomorphic to the neighbor set over the

four toe pads, N4 (Fig. 4). The same is true of anatomically equivalent
receptive fields, each of which consists of a sequence of compartments along

one toe. If one such receptive field F includes another, G, then the neighbor

set NF , associated with F includes the neighbor set NG , in the sense that each

element of NF includes the corresponding element of NG (Fig. 4).

The rules of combination bear on the excitation of climbing fibers,

because they have implications for the organization of images. For example,
we can adduce some consequences of the neighbor rule (Rule 1) on images,

for any number z of compartments. The form of the ordered set of images

Ai ensemble responses to stimuli * i is constrained by the fact that receptive

fields consist only of groups of neighboring compartments. Suppose that, for
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Fig. 3. The poset of toe pad receptive fields for cells in the anterior lobe is the neighbor set.

It omits some of the combinations found in the set of possible stimulus arrays. The four toe

pad compartments are represented as four contiguous squares. A compartment is shaded if it

is included in a receptive field. The join of two receptive fields r1 and r2, found in the usual

way in the poset, is the minimal receptive field r3 such that, if cells with receptive fields r1 or

r2 are excited, so are cells with receptive field r3.

Fig. 4. Example of domination of neighbor-set triangular posets: toe pads and the volar (bottom)

surfaces of the toes. Each receptive field is drawn on a paw diagram like the one in Fig. 2A.

At the lower left is the triangular subposet of toepads. At the lower right is the triangular

subposet of hairy areas around the toepads. At the top is the triangular sub-poset combining

toepads with their hairy surrounds.
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a particular set of cells with such receptive fields, Ai . Aj , where i, j P {1,

. . . , z}, i Þ j. Then any receptive field that includes compartment j also

includes compartment i. If i and j are not neighbors, then any receptive
field including compartment j also includes any intervening compartment k.

Therefore, Ak . Aj. These are general statements, applying to a neighbor set

over any number of elements.

Given any set of receptive fields over four compartments labeled sequen-

tially 1 through 4, it is easy to list the specific consequences of the general

consequences of the neighbor rule given in the preceding paragraph:

A3 . A1 Þ A2 . A1

A4 . A1 Þ A2 . A1 and A3 . A1

A4 . A2 Þ A3 . A2

A2 . A4 Þ A3 . A4

A1 . A4 Þ A3 . A4 and A2 . A4

A1 . A3 Þ A2 . A3

These statements are true for any set of receptive fields obeying the neighbor

rule (rule 1) over four sequentially labeled compartments, and are not drawn
specifically from any part of the cerebellum.

2.2 Anterior Lobe versus Paramedian Lobule

The paramedian lobule has a more limited set of receptive fields than

the anterior lobe, even though the receptive fields in the paramedian lobule
follow the same rules of combination (Fig. 5). Therefore, stimulus arrays are

excitation-equivalent in the paramedian lobule that are not in the anterior lobe.

For example, let the set of all stimulus arrays to the toe padsÐ isomorphic

to the power set over the compartmentsÐ be mapped onto the set of receptive

fields they excite. The anterior lobe distinguishes all stimulus arrays, because

each toe pad has an imageÐ set of excited cellsÐ that is not dominated by
the image of any other toe pad. When the image of one toe pad T dominates

that of another toe pad U, stimulating T masks whether U has been stimulated:

stimulating U does not change the pattern of excitation.

Every single-toe-pad image in the paramedian lobule either dominates

another or is dominated by another (Fig. 6). For example, A3 and A4 dominate

other images, but are not dominated by any. A stimulus array *3 ø *4 to toe
pads 3 and 4 would excite the image union A3 ø A4. In contrast, A3 dominates

A2. The stimulus array *3 ø *2 excites A3 ø A2 5 A3. In the paramedian

lobule, *3 ø *2 is excitation-equivalent to *3; they are not excitation-equivalent

in the anterior lobe, with its larger set of receptive fields.



2636 McCollum

Fig. 5. The poset of toe pad receptive fields found in the paramedian lobule (PML) is a subset

of the neighbor set. Toes are drawn as squares rather than in the context of the rest of the paw,

for diagrammatic simplicity. Otherwise, the conventions of the poset and the arrangement of

the receptive fields in the poset are as in Fig. 4.

The 16 possible stimulus arrays on four toes are divided into seven

excitation-equivalence classes by the limited set of receptive fields in the

paramedian lobule (Fig. 7). Each excitation-equivalence class is associated

with one or two dominant single-toe images, the images whose union is

excited by any stimulus array in the excitation-equivalence class. For example,

the excitation-equivalence class associated with A2 is {*2, *2 ø *1}: the
paramedian lobule does not distinguish whether *1 is included, because A2

dominates A1. There is also an excitation-equivalence class associated with

A2 and A4, neither of which dominates the other. They both dominate A1; it

can be included or not. The excitation-equivalence class associated with A3

has more elements, because A3 dominates two images. In that excitation-
equivalence class, *3 can be joined with either, neither, or both of *1 and *2.

Fig. 6. The poset of images of toe pads found in the paramedian lobule, as deduced from the

set of receptive fields (Fig. 5). Each image A m is the set of receptive fields excited by stimulation

of compartment m . Only A3 and A4 fail to be dominated by other images. A2 is dominated by

A3, and A1 is dominated by all the other three images.
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Fig. 7. Poset of ensembles excited by four-compartm ent stimulus arrays in the paramedian

lobule, with excitation-equiv alence classes grouped near the ensembles they excite. The excited

ensembles are denoted by images and unions of images A m . The stimuli are denoted as asterisks.

Similarly, each other excitation-equivalence class is generated in one of

two ways, one way being to (1) choose two images A m and A n , neither of

which dominates the other, (2) find the set {A k (1), . . . , A k (n)} of all images
dominated by A m or A n or both, (3) form each possible union of * m ø * n

with the different combinations of the members of {* k (1), . . . , * k (n)}. The

set of unions formed in step three is the excitation-equivalence class. The

other way to form an excitation-equivalence class is to carry out steps (1)±(3)

with a single A m , rather than a pair.

2.3. Lesions: Reducing the Set of Receptive Fields Even Further

The previous subsection described the limited ability of the paramedian

lobule to discriminate stimulus arrays, compared to the anterior lobe. When

receptive fields are eliminated by inhibition, injury, or the functional state

of the circuit, ability to discriminate can be further degraded (Fig. 8). The
degradation can be represented by increase in the size of excitation-equiva-

lence classes or by one image coming to dominate another.

For example, if the receptive field including only toe 4 is eliminated,

A3 comes to dominate A4. Then the two excitation-equivalence classes associ-
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Fig. 8. Changes in excited ensembles and excitation-equiv alence classes in the paramedian

lobule as receptive fields are eliminated. This is a way to study the effects of lesions on the

ability to discriminate stimulus arrays. At the center top is the poset from Fig. 7, with the

largest number of excited ensembles and the largest number of excitation-equiv alence classes.

Dashed arrows lead to posets with smaller numbers of excited ensembles. By each dashed

arrow is a diagram of the receptive field that is removed to reduce the excited ensemble poset.

As each receptive field is removed, unions of images become equal to each other, collapsing

excitation-equiv alence classes together.

ated with A3 and A3 ø A4 are merged. Another way to think of it is that, in
the excitation-equivalence class associated with A3, *3 was formerly taken

in union with all possible combinations from {*1, *2}, but now *4 is included

in that set, making {*1, *2, *4}.

After multiple receptive fields are eliminated, two images A m and A n

may come to be equal. Then their associated excitation-equivalence class

consists of all possible unions of one or both of * m and * n with combinations
of the stimuli associated with single-compartment images dominated by A m

( 5 A n ).

2.4. Residuated Excitation

A more general statement can be made about the type of mapping from

stimulus arrays to excitation that occurs in the cerebellum. This type of

mapping will be compared to a different one in the next section; the two
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types of mappings correspond to two major types of behavior observed in

climbing fiber experiments.

Let *i be defined as above and S be the poset of stimulus arrays, even
if the receptive fields do not obey the rules of combination found among the

climbing fibers. Let the set of cells excited by a one-time stimulus ø *i P I

*i be the union of images ø i P I Ai of single compartments. Define a new set

E to be the set of all cell ensembles D such that any two cells with the same

receptive field either belong both to D or both to DÅ (complement of D, that

is, the set of all cell ensembles not in D). So E is the poset of all possible
excited ensembles, where no distinction is made between cells with the same

receptive field.

Let the map a : S ® E take stimulus arrays onto their excited cell

ensembles, so that

a ( ø i P I *i) 5 ø i P I Ai

Elements of E of the form ø Ai are at the general case. Furthermore, there are

distinct stimulus arrays in S that map onto the same element e of E, if there is

a single-compartment image that is dominated by a union of other single-
compartment images. The role of a is (1) to single out those elements of E that

are ensembles of cells excited by a one-time stimulus array, and (2) to map

distinct stimulus arrays onto the same element of E in case a single-compartment

image is dominated by a union of other single-compartment images.

Under the order ª inclusion,º denoted here with $ , the map a is isotone,

because if ø i P I *i $ ø j P I *j , then

a ( ø i P I *i) 5 ø i P I Ai $ a ( ø i P J *j) 5 ø j P J A j

Now consider a map in the reverse direction, b : E ® S, defined as

follows. Given e P E, let I be the set of compartments such that i P I Û
Ai # e. Notice that means I is exactly the largest set such that ø i P I Ai # e.

Then let

b (e) 5 ø i P I *i

the largest stimulus array whose image is contained in e, this image being

in fact the largest contained in e.

If e1 $ e2, then any image contained in e2 is contained in e1. So b is

isotone, like a .
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Now consider the composition of the two maps a and b . Given a set I
of compartments,

b + a ( ø i P I *i) 5 b ( ø i P I Ai)

5 ø j P J *j , where J is the largest index set with

ø j P J Aj # ø i P I Ai (so J . I )

$ ø i P I *i

So b + a $ ids , where ids is the identity on S. Now, for any given e P E

a + b (e) 5 a ( ø i P I *i), where I is the maximum index set

such that ø i P I Ai # e

5 ø i P I Ai

# e

So a + b # idE.

The maps a and b are a residuated pair (Blyth and Janowitz, 1972),

because each is isotone, b + a $ ids and a + b # idE. Then the map t 5
b + a is a closure map on S in the sense that t 5 t + t $ ids (Blyth and
Janowitz, 1972, Theorem 2.7) (Fig. 9). The closed elements induced in S by

the closure map t are the excitation-equivalence classes.

A residuated mapping can be thought of as grouping subsets of character-

istics into a whole object, just as the smell of an orange, its taste, or its feel

evokes an image of a whole orange in the mind. As the set of receptive fields

is changed, the residuated mapping changes to group stimulus arrays into
different equivalence classes (or objects, in the analogy to sensing an orange).

In this way, lesions can be thought of as changing the set of perceptible

objects, equivalence classes, or patterns of excitation. Finding the set of

perceptible objects is an important practical problem in caring for neurologi-

cal patients.

3. SEQUENTIAL STIMULI AND THE SUBTHRESHOLD
OSCILLATION

The climbing fiber behavior considered in the previous section is consis-

tent with much of the experimental literature, but does not yet display observed

event detector behavior: responses only to unusual stimulation or unexpected
events (Rushmer et al., 1976; Gilbert and Thach, 1977; Gellman et al., 1985).

By taking into account sequential stimuli and subthreshold oscillation, this

section shows that both rhythmic and event detector behavior are consistent

with underlying rhythmic properties.
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Fig. 9. Closure mapping b + a for toepad stimulus arrays and excitation in the paramedian

lobule. Patterned arrows are superimposed on the poset S of stimulus arrays on four toepads.

The patterned arrows lead from an element to its closure. Each excitation-equivalence class

maps onto one closed element, its closure, in S.

The temporal relationship between the sequential stimulation and the

subthreshold oscillation determines the type of mapping from stimulus to

response, whether the mapping is residuated, as in the previous section, or

whether the mapping describes behavior more like an event detector. As in

the previous section, the stimuli may be tactile arrays rather than single-
compartment stimuli. This section considers mappings that fall into both

categories.

The physiological basis for rhythmic behavior in climbing fibers is the

spontaneous oscillation of the olivary cell’ s membrane potential (Bell and

Kawasaki, 1972; LlinaÂs and Sasaki, 1989). The oscillation does not usually

cause the cell to spike unless there is a stimulus, so it is called a ª subthreshold
oscillation.º Stimuli set and reset the phase of the subthreshold oscillation,

affecting the activity in response to subsequent stimuli (LlinaÂs and Sasaki,

1989).

Because the interaction of stimuli with the subthreshold oscillation is

of interest, the stimuli to be considered are restricted to temporally regular

ones that repeat after a fixed number of beats. A stimulus sequence of period
n will be specified by the notation (:s1:s2: . . . :sn:) of stimulus arrays occurring

in one cycle of the stimulus sequence, and by giving the beat-to-beat time

d from the onset of one stimulus array (or beat) to the next as a fraction of

the subthreshold oscillation period, or preferred period for activity. The period
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is not defined to be the least number of repeating elements, but can be

considered to be 2n, 3n, etc. In general, the delays may be inserted in the

stimulus-delay sequence: (:s1:d1:s2:d2: . . . :sn:dn:). In this paper, the duration
of the stimuli will be assumed to be insignificant compared to any di , i 5
1, . . . , n. Also, di will be taken to be the constant d throughout the sequence,

so it can be omitted from the sequence and specified separately. Irregular

rhythms may be denoted by inserting empty stimulus arrays so that, for

example, the stimulus-delay sequence (:s1:1:s2:2:) can be denoted as a pure

stimulus sequence (:s1:s2: f :) with d 5 1. The stimulus sequences are consid-
ered to be infinite in both directions in time.

3.1. Mapping Types for One-Spike Responses

The previous section considered mappings a from stimulus to excitation.
This section carries the mapping from excitation to response. Two stimuli

may be response-equivalent simply because they are excitation-equivalent.

This subsection considers only responses of one spike; later, the generalization

to multiple-spike responses will be sketched.

First, the definition of the map a is generalized to sequences: each
stimulus in (:s1:s2: . . . :sn:) maps individually onto a union of single-compart-

ment images:

a (:s1:s2: . . . :sn:) 5 (: ø k P K(1) Ak: ø k P K(2) Ak: . . . : ø k P K(n) Ak:)

where the colon notation is also used for images and where the K (i) are the

appropriate sets of compartments.
Each stimulus resets the phase of the subthreshold oscillation by resetting

the membrane potential to its most responsive (from which point it oscillates)

(LlinaÂs and Sasaki, 1989). Because of this, repeated excitation of an image

evokes activity with a probability given by d (the delay given as a fraction

of the preferred period). The probability p of a response is a function of

d, approximately

p (d ) 5
(1 1 cos 2 p d )

2

although it may not be exactly a sinusoid (LlinaÂs and Sasaki, 1989). So

if d 5 1, excitation of the image sequence evokes a one-spike response
every time, whereas if d 5 1/2, excitation of the image sequence never

evokes any response. The clearest example of the phenomenon in the

case d 5 1 is for a sequence consisting of a single repeated one-

compartment stimulus (:*i:):

g + a (:*i:) 5 g (:A i:)

5 & :Ai: ^
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where g maps from excitation to response and the ^ angle & brackets denote

neural activity (also referred to as response or spiking). The activity interval

is the same as the stimulus interval and the stimulated and active images are
always the same for d 5 1. However, if d 5 1/2, there is no activity at all.

The difference between residuated and event detector behavior becomes

more apparent when intersecting images are considered. If d is any integer,

every excitation leads to a response:

g + a (: ø k P K(1) *k: ø k P K(2) *k: . . . : ø k P K(n)*k:)

5 g (: ø k P K(1) Ak: ø k P K(2) Ak: . . . : ø k P K(n) Ak:)

5 & : ø k P K(1) Ak: ø k P K(2) Ak: . . . : ø k P K(n) Ak: ^

In contrast, when d 5 1/2 (or another half-integer value), sets of cells with

certain receptive fields are eliminated from the activity in an image, because
they are repeatedly reset. Let Br denote the set of climbing fibers with

receptive field r. (Then the Br are subsets of the Ai , and the set of all climbing

fibers is the disjoint union over all of the Br .) Writing T (i) and T ( j ) for the

sets of receptive fields containing compartments i and j, respectively, we have

g (:Ai:A j:) 5 & : ø rP T(i) Br 2 ø r P T(j) Br: ø rP T(j) Br 2 ø r P T(i) Br: ^

where a 2 s 5 a ù s, since Ai 5 ø r P T(i) Br and Aj 5 ø r P T( j) Br.

There are several reasons, specific to the inferior olive, to choose integer

and half-integer intervals. First, the probability of firing is probably not
exactly sinusoidal (LlinaÂs and Sasaki, 1989). Stimuli falling on a peak or in

a trough can be considered with reasonable confidence, but treatment of

intermediate values is likely to be inaccurate. Another reason is that there is

variability in preferred period within a cell population, so more numerical

precision is perhaps not appropriate for images.
The behavior of the mapping in distinguishing between sequences can

be envisioned by starting with the poset Qn of doubly infinite sequences of

excited ensembles that repeat after n elements, where inclusion is given by

(:X1:X2 : . . . :Xn:) $ (:Y1:Y2 : . . . :Yn:)

if Xi $ Yi for every i, or if there is cyclic permutation such that there is

element-by-element inclusion. The two-compartment stimuli, receptive fields,

and excitable ensembles shown in Fig. 10 will serve as a basis for later
examples. It can also cover inclusion between sequences of different numbers

of elements if null excited ensembles are interposed; for example, (:X1:X2:)

with d 5 1 can be written as (:X1: f :X2: f :), and then

(:X1:X1:X2:X2:) $ (:X1: f :X2: f :)

If networks of sequences are studied, a definition of aggregate inclusion may

be required.
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Fig. 10. Example of two compartments: stimulus arrays, receptive fields, excited ensembles,

and excited ensemble sequences of period 2. (A) Stimulus array poset S. (B) Receptive field

poset R. (C) Ensemble poset E . First it is drawn using the conventions of Fig. 6, and then

writing the images as unions of ensembles, represented here by their receptive fields, with

dashed underlining. (D) Poset Q2 of two-element sequences of excited images. Each sequence

is enclosed in parentheses. The elements of a sequence can appear in either order, because the

sequence repeats. Q2 is a lattice, but Qn is not in general a lattice for n . 2.

The response evoked by exciting the sequences in Q2 can be found by

determining the interval between occurrences of each receptive field and

multiplying the subsequent activity of the receptive field by the probability
of firing (Fig. 11). Let Fn(d ) be the poset of sequences of active ensembles,

denoted with loudspeaker brackets. [The relationship of Fn(d ) to Qn depends

on d, so it is specified in the notation.] For d 5 1, the poset of activity

patterns F2(1) is isomorphic to Q2. However, for d 5 1/2, F2(1/2) is smaller;

more than one element of Q2 maps onto the same element of F2(1/2), in

particular, (:A1 ø A2:A1 ø A2:), (:A1:A1:), (:A2:A2:), and f all map onto f (Fig.
12). Thus, the subthreshold oscillation introduces another type of response-

equivalence, for sequences, besides the type of response-equivalence arising

from excitation-equivalence described in the previous section, introduced by

one image dominating another.

For half-integer d, the map g can be specified in general by considering

that when each element Xi of a sequence (:X1: . . . :Xn:) is excited, the set of
climbing fibers that are activated can be found by a series of subtractions.

If the number n of elements in the cycle is odd, an element of the sequence

of excitations resets the cells in its ensemble so that its own repetition hits

a trough, whereas if n is even, an element of the sequence of excitations
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Fig. 11. Activity patterns F2(d ) for arbitrary d, stimulated by the two-element sequences shown

in Fig. 10D. Activity is enclosed in loudspeaker brackets. Images are multiplied by the probability

of firing. Dashed lines indicate that inclusion is induced from Q2.

Fig. 12. Poset of activity sequences F2(1/2) evoked by the two-element sequences shown in

Fig. 10D at a half-integer sequence interval with a one-spike response. Near each activity

sequence in loudspeaker brackets is a list of the members of the response-equivale nce class

of sequences. The format is that of Fig. 7, except that the poset is of activity rather than excited

images and the equivalence classes are of sequences rather than stimulus arrays.
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resets the cells in its ensemble so that its own repetition hits a peak of the

subthreshold oscillation. What fires in response to excitation of Xi is

Xi 2 [(Xk 2 (Xk 1 1 ø Xk 1 3 ø . . . ø Xk 1 n 2 2)) ø (Xk 1 2 2 (Xk 1 3

ø Xk 1 5 ø . . . ø Xk 1 n 2 2))

ø . . . ø (Xk 1 n 2 3 2 Xk 1 n 2 2) ø Xk 1 n 2 1]

where k 5 i for n odd and k 5 i 1 1 for n even, because those are the first

elements that must be subtracted in each case.

For n 5 3, what fires in response to one stimulus in the sequence is

Xi 2 [(Xi 2 Xi 1 1) ø Xi 1 2] 5 X i ù Xi 1 1 ù (Xi 1 2) 5 (Xi ù Xi 1 1) 2 Xi 1 2

Some special sequences are

g (:a:a:a:) 5 & : f : ^

g (:a:a:b:) 5 & :a 2 b: f : f : ^

g (:a:a: f :) 5 & :a: f : f : ^

g (:a:b: f :) 5 & :a ù b: f : f : ^

g (:a: f : f :) 5 & : f : ^

Response-equivalence arising from the subthreshold oscillation has been

illustrated for n 5 2, first in the case of general d (Fig. 11) and then as a

poset of responses, showing which excitations map onto them for half-integer

d (Fig. 12). The behavior of the entire mapping is clearer in the case of
n 5 3. Figure 13 shows the poset of excitations Q3 over the two-compartment S
and E shown in Figs. 10A and 10C. Figure 14 shows the response-equivalence

classes that result from mapping Q3 into F3(1/2), the poset of responses of

length 3 for d 5 1/2.

To show whether the mapping g from excitation to response is residuated,

a map from response back to excitation is required. Such a mapping can be
thought of as displaying the information about the stimulus that the nervous

system can find in its own response. The map g takes the poset of excited

ensemble sequences Qn into the poset of activity sequences Fn(d ). Depending

on the value of d, sequences in Qn may be response-equivalent to each other.

Let the map d take the poset of activity sequences Fn(d ) back into the poset
of excited ensembles Qn , so that the composition d + g induces a map from

Qn to itself, analogous to the map b + a from S to itself. Like the map b + a ,

the map d + g might not be injective. It will be constructed to map everything

in a given response-equivalence class of Qn onto the same element of Qn.

Unlike b + a , d + g is not always a closure. As a pair, the maps a and b
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Fig. 13. Poset Q3 of three-element sequences of excited images over the stimuli, receptive

fields, and images shown in Figs. 10A±10C. Conventions as in Fig. 10D.

Fig. 14. Poset of activity sequences F3(1/2) evoked by the three-element sequences shown in

Fig. 13 at a half-integer sequence interval. The response is one spike. Conventions as in Fig. 12.
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allow a definition of excitation-equivalence. Similarly, the pair g + a and

b + d allow a definition of response-equivalence.

Following the example of Fig. 14, there are many ways to construct a
map d + g : Q3 ® Q3 so that response-equivalence classes are mapped onto

one of their own members in Q3. However, such a map would not in general

be a closure for half-integer d because, as shown in Fig. 15 , some response-

equivalence classes contain elements that are not dominated by a common

element in their response-equivalence class. Figure 15 exemplifies nonclosure

maps arising from half-integer d as Fig. 9 exemplifies closure maps resulting
from residuated pairs and arising in the purely spatial case and from sequential

stimulation at integer d.

3.2. Multiple-Spike Responses

Response-equivalence can also result from a response consisting of

multiple spikes (LlinaÂs and Sasaki, 1989), because a continuing response

may mask whether a later response has occurred.
Even though the responses may be different, in some cases the response-

equivalence classes may be the same. For d 5 1/2, the same set of equivalence

classes occurs for Q3 over the two-compartment S and E above when there is

a one-spike response (Figs. 14 and 15) and when there is a two-spike response.

Fig. 15. Response-equivalen t elements of Q3 (Fig. 13) with half-integer d, showing the pattern

of their occurrence in Q3. Response-equivale nt sequences are connected by broad lines with a

wavy pattern. Sequences in ovals are singletons, not response-equivalen t to other sequences.
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It is tantalizing to think that more general results of this type might hold. Such

a constancy of equivalence classes does not hold for even n and integer d.

Multiple spikes group responses, rather than leading to event detector
behavior like that arising from stimulus sequences at half-integer intervals,

as will be shown by finding closure maps. For integer d and one-spike

responses, an arbitrary sequence maps as follows:

g (:X1: . . . :Xn:) 5 & :X1: . . .: Xn: ^

For two-spike responses,

g (:X1: . . . :Xn:) 5 & :Xn ø X1:X1 ø X2: . . . :Xn 2 1 ø Xn: ^

For three-spike responses,

g (:X1: . . . :Xn:)

5 & :Xn 2 1 ø Xn ø X1: Xn ø X1 ø X2: . . . : Xn 2 2 ø Xn 2 1 ø Xn: ^

And so on, so that for m-spike responses the unions are over m elements.

For integer d and one-spike responses, it is natural to choose d to map

each activity sequence back onto its image sequence:

d ( & :X1:X2: . . . :Xn: ^ ) 5 (:X1:X2: . . . :Xn:)

so that any two different excitation sequences are distinguishable as activity
sequences. For integer d, but given two-spike responses, two excitation

sequences are distinguishable in the resulting activity unless they contain

successive triples such that

Xi ù X i 1 2 $ Xi 1 1

because the first spike from Xi 1 1 will be masked by the second spike from

Xi and the second spike from Xi 1 1 will be masked by the first spike from

Xi 1 2. If element Xi 1 1 is masked, then the largest set I 5 {1, . . . ,n} of single

compartments such that the union of their images Ai , i P I, could be in Xi 1 1

is the largest set I such that

ø i P I Ai # Xi ù Xi 1 2

If two sequences are the same except for a masked Xi 1 1 (and a cyclic permuta-

tion), then they are response-equivalent for two-spike responses, and they

are both contained in the similar sequence containing the maximal Xi 1 1 5
Xi ù Xi 1 2. Using the definition of d for integer d, all the activity sequences
are mapped by d onto the sequence of images containing the maximal Xi 1 1.

Then d + g is a closure, because d + g (:Xj:) $ (:Xj:). Similar arguments can

be used to show that d + g is a closure for integer d in circumstances in

which responses consist of any fixed number of spikes.
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4. DISCUSSION

This paper has addressed the ability of the nervous system to distinguish
tactile stimuli by means of ensemble responses among cerebellar climbing fibers,

on the basis of interpretations of receptive field data and physiological experi-

ments. The principles, which are displayed in simple examples, apply equally

to more complex receptive fields and stimuli, because the receptive fields are

still generated according to simple rules. For example, although the neighbor

sets on the paw are based on four compartments, the number of compartments
in a line on the face can be much larger (Castelfranco et al., 1994).

The results of this paper can be generalized to give the full structure of

climbing fiber responses on various parts of the body. The various anatomical

equivalence classes of the paws can be concatenated and then joined to the

paw parts that do not fall into anatomical equivalence classes. Both on the

face and on the paws, there are sets of CF-continguous compartments that
do not fall simply into a line, but branch, leading to posets of a more general

form. Along the toes, the anatomical equivalence classes themselves form a

branched structure, with two branches meeting to form a cycle of toe CF-

contiguity, so the isomorphic triangular subposets in the poset of paw receptive

fields do not themselves form a triangle (McCollum, 1992).
Similarly, the results of this paper can be generalized to various vertebrate

species. Other species have different forms of receptive fields (Robertson

and Laxer, 1981; Logan and Robertson, 1986), but the cerebellar physiology

and therefore the mappings described in this paper are the same (Bloedel

and Courville, 1981).

The methods used in this study allow analysis of the consequences of
eliminating receptive fields, such as by inhibition, injury, or the functional

state of the circuit. Also, fewer stimulus arrays and fewer sequences of

stimulus arrays can be distinguished, in general, when more images are

dominated by other images (as in the paramedian lobule), when the response

consists of more spikes, and when the stimuli in the sequence are separated

by an interval d 5 1/2, half the period of the subthreshold oscillation.
Not only does distinguishability vary, but also the set of response ensembles

varies with the image poset, the sequence interval d, and the number of spikes

in the response. Perhaps the nervous system’s primary task is to use the set of

response ensembles to determine the conditions under which it was produced.

Furthermore, the type of mapping used in distinguishing response-

equivalence classes varies. For distinguishing excited images, the map b +
a is a closure. For integer d, d + g is a closure. A closure maps a set of

stimuli (or excitations) onto a set that includes it, as in smelling an orange

and being reminded of its taste, color, and texture: any subset of stimuli call

up the whole set.
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For half-integer d, the examples shown are not closures, and it seems

that such maps would seldom be closures. For half-integer d, the tendency

of the maps to allow only changes in excitation to be expressed in neural
activity is reminiscent of the suggestions that the climbing fibers act as event-

detectors (Rushmer et al., 1976), training signals (Houk, 1989), or exploratory

mechanisms (Bower and Kassel, 1990).

There are many way the nervous system could exploit the properties of

these maps. One way would be to plan movements so that the stimuli always

arrive on the peak of the subthreshold oscillation. Then ensemble activity
characteristic of half-integer d would be the domain of unfamiliar movements

or unpredicted environmental phenomena. Another way to exploit the proper-

ties of these maps would be to plan movements to receive stimuli on the

peak of the subthreshold oscillation, but to cancel their response by resetting

the climbing fibers with another signal, either internal to the nervous system

or from a cleverly planned other sensory source. Similar effects might be
observed, and exploited by the nervous system, in any cell population with

a refractory period or an inherent oscillation.
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